Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Gut Microbes ; 16(1): 2331985, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549437

RESUMO

Shigella flexneri causes severe diarrheal disease worldwide. While many aspects of pathogenesis have been elucidated, significant knowledge gaps remain regarding the role of putative chromosomally-encoded virulence genes. The uncharacterized sap gene encoded on the chromosome has significant nucleotide sequence identity to the fluffy (flu) antigen 43 autotransporter gene in pathogenic Escherichia coli. Here, we constructed a Δsap mutant in S. flexneri strain 2457T and examined the effects of this mutation on bacterial cell aggregation, biofilm formation, and adherence to colonic epithelial cells. Analyses included the use of growth media supplemented with glucose and bile salts to replicate small intestinal signals encountered by S. flexneri. Deletion of the sap gene in 2457T affected epithelial cell adherence, resulted in quicker bacterial cell aggregation, but did not affect biofilm formation. This work highlights a functional role for the sap gene in S. flexneri pathogenesis and further demonstrates the importance of using relevant and appropriate gastrointestinal signals to characterize virulence genes of enteropathogenic bacteria.


Assuntos
Microbioma Gastrointestinal , Sistemas de Secreção Tipo V , Sistemas de Secreção Tipo V/genética , Shigella flexneri/genética , Células Epiteliais/microbiologia , Mutação , Escherichia coli , Proteínas de Bactérias/genética
2.
J Vis Exp ; (204)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38407235

RESUMO

The human-adapted enteric bacterial pathogen Shigella causes millions of infections each year, creates long-term growth effects among pediatric patients, and is a leading cause of diarrheal deaths worldwide. Infection induces watery or bloody diarrhea as a result of the pathogen transiting the gastrointestinal tract and infecting the epithelial cells lining the colon. With staggering increases in antibiotic resistance and the current lack of approved vaccines, standardized research protocols are critical to studying this formidable pathogen. Here, methodologies are presented to examine the molecular pathogenesis of Shigella using in vitro analyses of bacterial adherence, invasion, and intracellular replication in colonic epithelial cells. Prior to infection analyses, the virulence phenotype of Shigella colonies was verified by the uptake of the Congo red dye on agar plates. Supplemented laboratory media can also be considered during bacterial culturing to mimic in vivo conditions. Bacterial cells are then used in a standardized protocol to infect colonic epithelial cells in tissue culture plates at an established multiplicity of infection with adaptations to analyze each stage of infection. For adherence assays, Shigella cells are incubated with reduced media levels to promote bacterial contact with epithelial cells. For both invasion and intracellular replication assays, gentamicin is applied for various time intervals to eliminate extracellular bacteria and enable assessment of invasion and/or the quantification of intracellular replication rates. All infection protocols enumerate adherent, invaded, and/or intracellular bacteria by serially diluting infected epithelial cell lysates and plating bacterial colony forming units relative to infecting titers on Congo red agar plates. Together, these protocols enable independent characterization and comparisons for each stage of Shigella infection of epithelial cells to study this pathogen successfully.


Assuntos
Disenteria Bacilar , Shigella , Humanos , Criança , Ágar , Vermelho Congo , Células Epiteliais , Diarreia
3.
Pediatr Res ; 95(5): 1254-1264, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38177249

RESUMO

BACKGROUND AND AIMS: We have identified a decreased abundance of microbial species known to have a potential anti-inflammatory, protective effect in subjects that developed Celiac Disease (CeD) compared to those who did not. We aim to confirm the potential protective role of one of these species, namely Bacteroides vulgatus, and to mechanistically establish the effect of bacterial bioproducts on gluten-dependent changes on human gut epithelial functions. METHODS: We identified, isolated, cultivated, and sequenced a unique novel strain (20220303-A2) of B. vulgatus found only in control subjects. Using a human gut organoid system developed from pre-celiac patients, we monitored epithelial phenotype and innate immune cytokines at baseline, after exposure to gliadin, or gliadin plus B. vulgatus cell free supernatant (CFS). RESULTS: Following gliadin exposure, we observed increases in epithelial cell death, epithelial monolayer permeability, and secretion of pro-inflammatory cytokines. These effects were mitigated upon exposure to B. vulgatus 20220303-A2 CFS, which had matched phenotype gene product mutations. These protective effects were mediated by epigenetic reprogramming of the organoids treated with B. vulgatus CFS. CONCLUSIONS: We identified a unique strain of B. vulgatus that may exert a beneficial role by protecting CeD epithelium against a gluten-induced break of epithelial tolerance through miRNA reprogramming. IMPACT: Gut dysbiosis precedes the onset of celiac disease in genetically at-risk infants. This dysbiosis is characterized by the loss of protective bacterial strains in those children who will go on to develop celiac disease. The paper reports the mechanism by which one of these protective strains, B. vulgatus, ameliorates the gluten-induced break of gut epithelial homeostasis by epigenetically re-programming the target intestinal epithelium involving pathways controlling permeability, immune response, and cell turnover.

4.
Gut Microbes ; 15(2): 2248713, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37724815

RESUMO

The gastrointestinal (GI) epithelium plays a major role in nutrient absorption, barrier formation, and innate immunity. The development of organoid-based methodology has significantly impacted the study of the GI epithelium, particularly in the fields of mucosal biology, immunity, and host-microbe interactions. Various effects on the GI epithelium, such as genetics and nutrition, impact patients and alter disease states. Thus, incorporating these effects into organoid-based models will facilitate a better understanding of disease progression and offer opportunities to evaluate therapeutic candidates. One condition that has a significant effect on the GI epithelium is malnutrition, and studying the mechanistic impacts of malnutrition would enhance our understanding of several pathologies. Therefore, the goal of this study was to begin to develop methodology to generate viable malnourished organoids with accessible techniques and resources that can be used for a wide array of mechanistic studies. By selectively limiting distinct macronutrient components of organoid media, we were able to successfully culture and evaluate malnourished organoids. Genetic and protein-based analyses were used to validate the approach and confirm the presence of known biomarkers of malnutrition. Additionally, as proof-of-concept, we utilized malnourished organoid-derived monolayers to evaluate the effect of malnourishment on barrier formation and the ability of the bacterial pathogen Shigella flexneri to infect the GI epithelium. This work serves as the basis for new and exciting techniques to alter the nutritional state of organoids and investigate the related impacts on the GI epithelium.


Assuntos
Microbioma Gastrointestinal , Desnutrição , Humanos , Estado Nutricional , Epitélio , Organoides
5.
Curr Opin Infect Dis ; 34(5): 491-499, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34524200

RESUMO

PURPOSE OF REVIEW: Alarming rates of antibiotic resistance in bacteria and gastrointestinal dysbiosis associated with traditional antimicrobial therapy have led to renewed interests in developing bacteriophages as novel therapeutics. In this review, we highlight some of the recent advances in bacteriophage therapeutic development targeting important enteropathogens of the gastrointestinal tract. RECENT FINDINGS: Bacteriophages are viruses that infect bacteria, either to utilize the bacterial machinery to produce new progeny or stably integrate into the bacterial chromosome to ensure maintenance of the viral genome. With recent advances in synthetic biology and the discovery of CRISPR-Cas systems used by bacteria to protect against bacteriophages, novel molecular applications are taking us beyond the discovery of bacteriophages and toward innovative applications, including the targeting of bacterial virulence factors, the use of temperate bacteriophages, and the production of bacteriophage proteins as antimicrobial agents. These technologies offer promise to target enteropathogens without disrupting the healthy microbiota of the gastrointestinal tract. Moreover, the use of nanoparticle technology and other modifications are helping researchers circumvent the harsh gastrointestinal conditions that could limit the efficacy of bacteriophages against enteric pathogens. SUMMARY: This era of discovery and development offers significant potential to modify bacteriophages and overcome the global impact of enteropathogens.


Assuntos
Bacteriófagos , Antibacterianos/uso terapêutico , Bactérias , Sistemas CRISPR-Cas , Disbiose/tratamento farmacológico , Humanos
6.
Microbiol Spectr ; 9(1): e0000321, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34106568

RESUMO

Gastrointestinal infections cause significant morbidity and mortality worldwide. The complexity of human biology and limited insights into host-specific infection mechanisms are key barriers to current therapeutic development. Here, we demonstrate that two-dimensional epithelial monolayers derived from human intestinal organoids, combined with in vivo-like bacterial culturing conditions, provide significant advancements for the study of enteropathogens. Monolayers from the terminal ileum, cecum, and ascending colon recapitulated the composition of the gastrointestinal epithelium, in which several techniques were used to detect the presence of enterocytes, mucus-producing goblet cells, and other cell types following differentiation. Importantly, the addition of receptor activator of nuclear factor kappa-B ligand (RANKL) increased the presence of M cells, critical antigen-sampling cells often exploited by enteric pathogens. For infections, bacteria were grown under in vivo-like conditions known to induce virulence. Overall, interesting patterns of tissue tropism and clinical manifestations were observed. Shigella flexneri adhered efficiently to the cecum and colon; however, invasion in the colon was best following RANKL treatment. Both Salmonella enterica serovars Typhi and Typhimurium displayed different infection patterns, with S. Typhimurium causing more destruction of the terminal ileum and S. Typhi infecting the cecum more efficiently than the ileum, particularly with regard to adherence. Finally, various pathovars of Escherichia coli validated the model by confirming only adherence was observed with these strains. This work demonstrates that the combination of human-derived tissue with targeted bacterial growth conditions enables powerful analyses of human-specific infections that could lead to important insights into pathogenesis and accelerate future vaccine development. IMPORTANCE While traditional laboratory techniques and animal models have provided valuable knowledge in discerning virulence mechanisms of enteric pathogens, the complexity of the human gastrointestinal tract has hindered our understanding of physiologically relevant, human-specific interactions; and thus, has significantly delayed successful vaccine development. The human intestinal organoid-derived epithelial monolayer (HIODEM) model closely recapitulates the diverse cell populations of the intestine, allowing for the study of human-specific infections. Differentiation conditions permit the expansion of various cell populations, including M cells that are vital to immune recognition and the establishment of infection by some bacteria. We provide details of reproducible culture methods and infection conditions for the analyses of Shigella, Salmonella, and pathogenic Escherichia coli in which tissue tropism and pathogen-specific infection patterns were detected. This system will be vital for future studies that explore infection conditions, health status, or epigenetic differences and will serve as a novel screening platform for therapeutic development.


Assuntos
Técnicas de Cultura de Células/métodos , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/fisiologia , Trato Gastrointestinal/microbiologia , Organoides/microbiologia , Enterobacteriaceae/genética , Enterobacteriaceae/patogenicidade , Enterócitos/microbiologia , Células Epiteliais/citologia , Células Epiteliais/microbiologia , Epitélio/microbiologia , Trato Gastrointestinal/citologia , Humanos , Organoides/citologia , Virulência
7.
mBio ; 11(6)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203761

RESUMO

The mechanism of protection against cholera afforded by previous illness or vaccination is currently unknown. We have recently shown that antibodies targeting O-specific polysaccharide (OSP) of Vibrio cholerae correlate highly with protection against cholera. V. cholerae is highly motile and possesses a flagellum sheathed in OSP, and motility of V. cholerae correlates with virulence. Using high-speed video microscopy and building upon previous animal-related work, we demonstrate that sera, polyclonal antibody fractions, and OSP-specific monoclonal antibodies recovered from humans surviving cholera block V. cholerae motility at both subagglutinating and agglutinating concentrations. This antimotility effect is reversed by preadsorbing sera and polyclonal antibody fractions with purified OSP and is associated with OSP-specific but not flagellin-specific monoclonal antibodies. Fab fragments of OSP-specific polyclonal antibodies do not inhibit motility, suggesting a requirement for antibody-mediated cross-linking in motility inhibition. We show that OSP-specific antibodies do not directly affect V. cholerae viability, but that OSP-specific monoclonal antibody highly protects against death in the murine cholera model. We used in vivo competitive index studies to demonstrate that OSP-specific antibodies impede colonization and survival of V. cholerae in intestinal tissues and that this impact is motility dependent. Our findings suggest that the impedance of motility by antibodies targeting V. cholerae OSP contributes to protection against cholera.IMPORTANCE Cholera is a severe dehydrating illness of humans caused by Vibrio choleraeV. cholerae is a highly motile bacterium that has a single flagellum covered in lipopolysaccharide (LPS) displaying O-specific polysaccharide (OSP), and V. cholerae motility correlates with its ability to cause disease. The mechanisms of protection against cholera are not well understood; however, since V. cholerae is a noninvasive intestinal pathogen, it is likely that antibodies that bind the pathogen or its products in the intestinal lumen contribute to protection from infection. Here, we demonstrate that OSP-specific antibodies isolated from humans surviving cholera in Bangladesh inhibit V. cholerae motility and are associated with protection against challenge in a motility-dependent manner.


Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Cólera/imunologia , Antígenos O/imunologia , Vibrio cholerae/imunologia , Aglutinação , Animais , Animais Lactentes , Bangladesh , Cólera/microbiologia , Humanos , Camundongos , Vibrio cholerae/patogenicidade
8.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32661122

RESUMO

Throughout the course of infection, many pathogens encounter bactericidal conditions that threaten the viability of the bacteria and impede the establishment of infection. Bile is one of the most innately bactericidal compounds present in humans, functioning to reduce the bacterial burden in the gastrointestinal tract while also aiding in digestion. It is becoming increasingly apparent that pathogens successfully resist the bactericidal conditions of bile, including bacteria that do not normally cause gastrointestinal infections. This review highlights the ability of Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, Enterobacter (ESKAPE), and other enteric pathogens to resist bile and how these interactions can impact the sensitivity of bacteria to various antimicrobial agents. Given that pathogen exposure to bile is an essential component to gastrointestinal transit that cannot be avoided, understanding how bile resistance mechanisms align with antimicrobial resistance is vital to our ability to develop new, successful therapeutics in an age of widespread and increasing antimicrobial resistance.


Assuntos
Antibacterianos/metabolismo , Bactérias/patogenicidade , Bile/metabolismo , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Intestino Delgado/microbiologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Virulência
9.
Microorganisms ; 8(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244707

RESUMO

The molecular complexity of host-pathogen interactions remains poorly understood in many infectious diseases, particularly in humans due to the limited availability of reliable and specific experimental models. To bridge the gap between classical two-dimensional culture systems, which often involve transformed cell lines that may not have all the physiologic properties of primary cells, and in vivo animal studies, researchers have developed the organoid model system. Organoids are complex three-dimensional structures that are generated in vitro from primary cells and can recapitulate key in vivo properties of an organ such as structural organization, multicellularity, and function. In this review, we discuss how organoids have been deployed in exploring Salmonella infection in mice and humans. In addition, we summarize the recent advancements that hold promise to elevate our understanding of the interactions and crosstalk between multiple cell types and the microbiota with Salmonella. These models have the potential for improving clinical outcomes and future prophylactic and therapeutic intervention strategies.

10.
Gut Microbes ; 11(3): 526-538, 2020 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31829769

RESUMO

SALMONELLA ENTERICA: serovar Typhi is the etiologic agent of typhoid fever, a major public health problem in the developing world. Moving toward and adhering to the intestinal epithelium represents key initial steps of infection by S. Typhi. We examined the role of the S. Typhi yrbE gene, which encodes an inner membrane phospholipid transporter, in these interactions with epithelial cells. Disruption of yrbE resulted in elevated expression of flagellin and a hypermotile phenotype. It also significantly reduced the ability of S. Typhi to adhere to the HeLa epithelial cell line and to polarized primary epithelial cells derived from human ileal organoids. Interestingly, the yrbE-deficient strain of S. Typhi induced higher production of interleukin-8 from the primary human ileal epithelial cell monolayers compared to the wild-type bacteria. Deletion of the flagellin gene (fliC) in the yrbE-deficient S. Typhi inhibited motility and attenuated interleukin-8 production, but it did not correct the defect in adhesion. We also disrupted yrbE in S. Typhimurium. In contrast to the results in S. Typhi, the deficiency of yrbE in S. Typhimurium had no significant effect on flagellin expression, motility or adhesion to HeLa cells. Correspondingly, the lack of yrbE also had no effect on association with the intestine or the severity of intestinal inflammation in the mouse model of S. Typhimurium infection. Thus, our results point to an important and serovar-specific role played by yrbE in the early stages of intestinal infection by S. Typhi.


Assuntos
Aderência Bacteriana , Flagelina/genética , Proteínas de Membrana Transportadoras/fisiologia , Infecções por Salmonella/microbiologia , Salmonella typhi/fisiologia , Animais , Proteínas de Bactérias/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Cães , Células Epiteliais/microbiologia , Flagelina/metabolismo , Regulação Bacteriana da Expressão Gênica , Células HeLa , Interações entre Hospedeiro e Microrganismos , Humanos , Inflamação/microbiologia , Interleucina-8/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Movimento , Fosfolipídeos/metabolismo , Salmonella typhimurium/fisiologia , Índice de Gravidade de Doença
11.
mSphere ; 4(6)2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722995

RESUMO

The Shigella species are Gram-negative, facultative intracellular pathogens that invade the colonic epithelium and cause significant diarrheal disease. Despite extensive research on the pathogen, a comprehensive understanding of how Shigella initiates contact with epithelial cells remains unknown. Shigella maintains many of the same Escherichia coli adherence gene operons; however, at least one critical gene component in each operon is currently annotated as a pseudogene in reference genomes. These annotations, coupled with a lack of structures upon microscopic analysis following growth in laboratory media, have led the field to hypothesize that Shigella is unable to produce fimbriae or other traditional adherence factors. Nevertheless, our previous analyses have demonstrated that a combination of bile salts and glucose induces both biofilm formation and adherence to colonic epithelial cells. The goal of this study was to perform transcriptomic and genetic analyses to demonstrate that adherence gene operons in Shigella flexneri strain 2457T are functional, despite the gene annotations. Our results demonstrate that at least three structural genes facilitate S. flexneri 2457T adherence for epithelial cell contact and biofilm formation. Furthermore, our results demonstrate that host factors, namely, glucose and bile salts at their physiological concentrations in the small intestine, offer key environmental stimuli required for adherence factor expression in S. flexneri This research may have a significant impact on Shigella vaccine development and further highlights the importance of utilizing in vivo-like conditions to study bacterial pathogenesis.IMPORTANCE Bacterial pathogens have evolved to regulate virulence gene expression at critical points in the colonization and infection processes to successfully cause disease. The Shigella species infect the epithelial cells lining the colon to result in millions of cases of diarrhea and a significant global health burden. As antibiotic resistance rates increase, understanding the mechanisms of infection is vital to ensure successful vaccine development. Despite significant gains in our understanding of Shigella infection, it remains unknown how the bacteria initiate contact with the colonic epithelium. Most pathogens harbor multiple adherence factors to facilitate this process, but Shigella was thought to have lost the ability to produce these factors. Interestingly, we have identified conditions that mimic some features of gastrointestinal transit and that enable Shigella to express adherence structural genes. This work highlights aspects of genetic regulation for Shigella adherence factors and may have a significant impact on future vaccine development.


Assuntos
Adesinas Bacterianas/biossíntese , Aderência Bacteriana , Células Epiteliais/microbiologia , Regulação Bacteriana da Expressão Gênica , Shigella flexneri/crescimento & desenvolvimento , Shigella flexneri/metabolismo , Adesinas Bacterianas/genética , Ácidos e Sais Biliares/metabolismo , Biofilmes/crescimento & desenvolvimento , Células Cultivadas , Perfilação da Expressão Gênica , Glucose/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Óperon , Shigella flexneri/efeitos dos fármacos
12.
J Pediatr Gastroenterol Nutr ; 68(4): 509-516, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30418409

RESUMO

OBJECTIVE: Enteric bacterial pathogens cause diarrheal disease and mortality at significant rates throughout the world, particularly in children younger than 5 years. Our ability to combat bacterial pathogens has been hindered by antibiotic resistance, a lack of effective vaccines, and accurate models of infection. With the renewed interest in bacteriophage therapy, we sought to use a novel human intestinal model to investigate the efficacy of a newly isolated bacteriophage against Shigella flexneri. METHODS: An S. flexneri 2457T-specific bacteriophage was isolated and assessed through kill curve experiments and infection assays with colorectal adenocarcinoma HT-29 cells and a novel human intestinal organoid-derived epithelial monolayer model. In our treatment protocol, organoids were generated from intestinal crypt stem cells, expanded in culture, and seeded onto transwells to establish 2-dimensional monolayers that differentiate into intestinal cells. RESULTS: The isolated bacteriophage efficiently killed S. flexneri 2457T, other S. flexneri strains, and a strain of 2457T harboring an antibiotic resistance cassette. Analyses with laboratory and commensal Escherichia coli strains demonstrated that the bacteriophage was specific to S. flexneri, as observed under co-culture conditions. Importantly, the bacteriophage prevented both S. flexneri 2457T epithelial cell adherence and invasion in both infection models. CONCLUSIONS: Bacteriophages offer feasible alternatives to antibiotics for eliminating enteric pathogens, confirmed here by the bacteriophage-targeted killing of S. flexneri. Furthermore, application of the organoid model has provided important insight into Shigella pathogenesis and bacteriophage-dependent intervention strategies. The screening platform described herein provides proof-of-concept analysis for the development of novel bacteriophage therapies to target antibiotic-resistant pathogens.


Assuntos
Diarreia Infantil/terapia , Escherichia coli , Intestinos/microbiologia , Terapia por Fagos , Shigella flexneri , Criança , Diarreia Infantil/microbiologia , Feminino , Células HT29 , Humanos , Lactente , Recém-Nascido , Masculino
13.
J Clin Invest ; 128(9): 4044-4056, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30102254

RESUMO

Neutrophil influx into the intestinal lumen is a critical response to infectious agents, but is also associated with severe intestinal damage observed in idiopathic inflammatory bowel disease. The chemoattractant hepoxilin A3, an eicosanoid secreted from intestinal epithelial cells by the apically restricted efflux pump multidrug resistance protein 2 (MRP2), mediates this neutrophil influx. Information about a possible counterbalance pathway that could signal the lack of or resolution of an apical inflammatory signal, however, has yet to be described. We now report a system with such hallmarks. Specifically, we identify endocannabinoids as the first known endogenous substrates of the apically restricted multidrug resistance transporter P-glycoprotein (P-gp) and reveal a mechanism, which we believe is novel, for endocannabinoid secretion into the intestinal lumen. Knockdown or inhibition of P-gp reduced luminal secretion levels of N-acyl ethanolamine-type endocannabinoids, which correlated with increased neutrophil transmigration in vitro and in vivo. Additionally, loss of CB2, the peripheral cannabinoid receptor, led to increased pathology and neutrophil influx in models of acute intestinal inflammation. These results define a key role for epithelial cells in balancing the constitutive secretion of antiinflammatory lipids with the stimulated secretion of proinflammatory lipids via surface efflux pumps in order to control neutrophil infiltration into the intestinal lumen and maintain homeostasis in the healthy intestine.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Endocanabinoides/metabolismo , Mucosa Intestinal/metabolismo , Infiltração de Neutrófilos/fisiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/deficiência , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico Ativo , Linhagem Celular , Modelos Animais de Doenças , Feminino , Homeostase , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/prevenção & controle , Mucosa Intestinal/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Receptor CB2 de Canabinoide/deficiência , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Transdução de Sinais
14.
J Vis Exp ; (135)2018 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-29781989

RESUMO

Biofilm formation is a dynamic, multistage process that occurs in bacteria under harsh environmental conditions or times of stress. For enteric pathogens, a significant stress response is induced during gastrointestinal transit and upon bile exposure, a normal component of human digestion. To overcome the bactericidal effects of bile, many enteric pathogens form a biofilm hypothesized to permit survival when transiting through the small intestine. Here we present methodologies to define biofilm formation through solid-phase adherence assays as well as extracellular polymeric substance (EPS) matrix detection and visualization. Furthermore, biofilm dispersion assessment is presented to mimic the analysis of events triggering release of bacteria during the infection process. Crystal violet staining is used to detect adherent bacteria in a high-throughput 96-well plate adherence assay. EPS production assessment is determined by two assays, namely microscopy staining of the EPS matrix and semi-quantitative analysis with a fluorescently-conjugated polysaccharide binding lectin. Finally, biofilm dispersion is measured through colony counts and plating. Positive data from multiple assays support the characterization of biofilms and can be utilized to identify bile salt-induced biofilm formation in other bacterial strains.


Assuntos
Antibacterianos/uso terapêutico , Bactérias/patogenicidade , Ácidos e Sais Biliares/metabolismo , Biofilmes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Humanos
15.
Infect Immun ; 85(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28348056

RESUMO

The Shigella species cause millions of cases of watery or bloody diarrhea each year, mostly in children in developing countries. While many aspects of Shigella colonic cell invasion are known, crucial gaps in knowledge regarding how the bacteria survive, transit, and regulate gene expression prior to infection remain. In this study, we define mechanisms of resistance to bile salts and build on previous research highlighting induced virulence in Shigella flexneri strain 2457T following exposure to bile salts. Typical growth patterns were observed within the physiological range of bile salts; however, growth was inhibited at higher concentrations. Interestingly, extended periods of exposure to bile salts led to biofilm formation, a conserved phenotype that we observed among members of the Enterobacteriaceae Characterization of S. flexneri 2457T biofilms determined that both bile salts and glucose were required for formation, dispersion was dependent upon bile salts depletion, and recovered bacteria displayed induced adherence to HT-29 cells. RNA-sequencing analysis verified an important bile salt transcriptional profile in S. flexneri 2457T, including induced drug resistance and virulence gene expression. Finally, functional mutagenesis identified the importance of the AcrAB efflux pump and lipopolysaccharide O-antigen synthesis for bile salt resistance. Our data demonstrate that S. flexneri 2457T employs multiple mechanisms to survive exposure to bile salts, which may have important implications for multidrug resistance. Furthermore, our work confirms that bile salts are important physiological signals to activate S. flexneri 2457T virulence. This work provides insights into how exposure to bile likely regulates Shigella survival and virulence during host transit and subsequent colonic infection.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos e Sais Biliares/farmacologia , Biofilmes/efeitos dos fármacos , Antígenos O/metabolismo , Shigella flexneri/efeitos dos fármacos , Shigella flexneri/patogenicidade , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Células HT29 , Células HeLa , Humanos , Microscopia Eletrônica , Mutação , Antígenos O/genética , Análise de Sequência de RNA , Shigella flexneri/genética , Virulência/genética
16.
Gut Microbes ; 7(6): 486-502, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27657187

RESUMO

Shigella flexneri is a Gram-negative pathogen that invades the colonic epithelium and causes millions of cases of watery diarrhea or bacillary dysentery predominately in children under the age of 5 years in developing countries. The effector Shigella enterotoxin 2 (ShET2), or OspD3, is encoded by the sen or ospD3 gene on the virulence plasmid. Previous literature has suggested that ospD3 is in an operon downstream of the ospC1 gene, and expression of both genes is controlled by a promoter upstream of ospC1. Since the intergenic region is 328 bases in length and contains several putative promoter regions, we hypothesized the genes are independently expressed. Here we provide data that ospD3 and ospC1 are not co-transcribed and that OspC1 is not required for OspD3/ShET2 function. Most importantly, we identified strong promoter activity in the intergenic region and demonstrate that OspD3/ShET2 can be expressed and secreted independently of OspC1. This work increases our understanding of the synthesis of a unique virulence factor and provides further insights into Shigella pathogenesis.


Assuntos
Proteínas de Bactérias/biossíntese , Disenteria Bacilar/microbiologia , Regulação Bacteriana da Expressão Gênica , Shigella flexneri/metabolismo , Proteínas de Bactérias/genética , Humanos , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Shigella flexneri/genética , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
17.
Clin Microbiol Rev ; 29(4): 819-36, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27464994

RESUMO

Bacterial pathogens have coevolved with humans in order to efficiently infect, replicate within, and be transmitted to new hosts to ensure survival and a continual infection cycle. For enteric pathogens, the ability to adapt to numerous host factors under the harsh conditions of the gastrointestinal tract is critical for establishing infection. One such host factor readily encountered by enteric bacteria is bile, an innately antimicrobial detergent-like compound essential for digestion and nutrient absorption. Not only have enteric pathogens evolved to resist the bactericidal conditions of bile, but these bacteria also utilize bile as a signal to enhance virulence regulation for efficient infection. This review provides a comprehensive and up-to-date analysis of bile-related research with enteric pathogens. From common responses to the unique expression of specific virulence factors, each pathogen has overcome significant challenges to establish infection in the gastrointestinal tract. Utilization of bile as a signal to modulate virulence factor expression has led to important insights for our understanding of virulence mechanisms for many pathogens. Further research on enteric pathogens exposed to this in vivo signal will benefit therapeutic and vaccine development and ultimately enhance our success at combating such elite pathogens.


Assuntos
Bile/metabolismo , Enterobacteriaceae/fisiologia , Animais , Modelos Animais de Doenças , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Viabilidade Microbiana , Virulência , Fatores de Virulência/biossíntese
18.
PLoS One ; 7(11): e49980, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166804

RESUMO

Shigella flexneri is a Gram-negative, facultative intracellular pathogen that causes millions of cases of watery or bloody diarrhea annually, resulting in significant global mortality. Watery diarrhea is thought to arise in the jejunum, and subsequent bloody diarrhea occurs as a result of invasion of the colonic epithelium. Previous literature has demonstrated that Shigella encodes enterotoxins, both chromosomally and on the 220 kilobase virulence plasmid. The ShigellaEnterotoxins 1 and 2 (ShET1 and ShET2) have been shown to increase water accumulation in the rabbit ileal loop model. In addition, these toxins increase the short circuit current in rabbit tissue mounted in Ussing chambers, which is a model for the ion exchange that occurs during watery diarrhea. In this study, we sought to validate the use of mouse jejunum in Ussing chamber as an alternative, more versatile model to study bacterial pathogenesis. In the process, we also identified enterotoxins in addition to ShET1 and ShET2 encoded by S. flexneri. Through analysis of proteins secreted from wildtype bacteria and various deletion mutants, we have identified four factors responsible for enterotoxin activity: ShET1 and Pic, which are encoded on the chromosome; ShET2 (encoded by sen or ospD3), which requires the type-III secretion system for secretion; and SepA, an additional factor encoded on the virulence plasmid. The use of mouse jejunum serves as a reliable and reproducible model to identify the enterotoxins elaborated by enteric bacteria. Moreover, the identification of all Shigella proteins responsible for enterotoxin activity is vital to our understanding of Shigella pathogenicity and to our success in developing safe and effective vaccine candidates.


Assuntos
Diarreia/microbiologia , Enterotoxinas/toxicidade , Jejuno/efeitos dos fármacos , Jejuno/microbiologia , Modelos Biológicos , Shigella flexneri/química , Shigella flexneri/patogenicidade , Análise de Variância , Animais , Western Blotting , Vermelho Congo , Primers do DNA/genética , Enterotoxinas/análise , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Reação em Cadeia da Polimerase , Coelhos
19.
Mol Microbiol ; 85(1): 107-21, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22571618

RESUMO

Shigella flexneri is a Gram-negative pathogen that invades the colonic epithelium. While invasion has been thoroughly investigated, it is unknown how Shigella first attaches to the epithelium. Previous literature suggests that Shigella utilizes adhesins that are induced by environmental signals, including bile salts, encountered in the small intestine prior to invasion. We hypothesized that bile would induce adherence factors to facilitate attachment to colonic epithelial cells. To test our hypothesis, S. flexneri strain 2457T was subcultured in media containing bile salts, and the ability of the bacteria to adhere to the apical surface of polarized T84 epithelial cells was measured. We observed a significant increase in adherence, which was absent in a virulence plasmid-cured strain and a type-III secretion system mutant. Microarray expression analysis indicated that the ospE1/ospE2 genes were induced in the presence of bile, and bile-induced adherence was lost in a ΔospE1/ΔospE2 mutant. Further studies demonstrated that the OspE1/OspE2 proteins were localized to the bacterial outer membrane following exposure to bile salts. The data presented are the first demonstration that the OspE1/OspE2 proteins promote initial adherence to the intestinal epithelium. The adhesins required for Shigella attachment to the colonic epithelium may serve as ideal targets for vaccine development.


Assuntos
Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/metabolismo , Ácidos e Sais Biliares/metabolismo , Mucosa Intestinal/microbiologia , Shigella flexneri/patogenicidade , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Sistemas de Secreção Bacterianos , Linhagem Celular , Polaridade Celular , Células Epiteliais/microbiologia , Deleção de Genes , Humanos , Shigella flexneri/genética , Virulência
20.
Proc Natl Acad Sci U S A ; 108(31): 12881-6, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21768350

RESUMO

The serine protease autotransporters of Enterobacteriaceae (SPATEs) are secreted by pathogenic Gram-negative bacteria through the autotransporter pathway. We previously classified SPATE proteins into two classes: cytotoxic (class 1) and noncytotoxic (class 2). Here, we show that Pic, a class 2 SPATE protein produced by Shigella flexneri 2a, uropathogenic and enteroaggregative Escherichia coli strains, targets a broad range of human leukocyte adhesion proteins. Substrate specificity was restricted to glycoproteins rich in O-linked glycans, including CD43, CD44, CD45, CD93, CD162 (PSGL-1; P-selectin glycoprotein ligand 1), and the surface-attached chemokine fractalkine, all implicated in leukocyte trafficking, migration, and inflammation. N-terminal sequencing of proteolytic products revealed Pic (protease involved in colonization) cleavage sites to occur before Thr or Ser residues. The purified carbohydrate sLewis-X implied in inflammation and malignancy inhibited cleavage of PSGL-1 by Pic. Exposure of human leukocytes to purified Pic resulted in polymorphonuclear cell activation, but impaired chemotaxis and transmigration; Pic-treated T cells underwent programmed cell death. We also show that the Pic-related protease Tsh/Hbp, implicated in extraintestinal infections, exhibited a spectrum of substrates similar to those cleaved by Pic. In the guinea pig keratoconjunctivitis model, a Shigella pic mutant induced greater inflammation than its parent strain. We suggest that the class-2 SPATEs represent unique immune-modulating bacterial virulence factors.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Glicoproteínas/metabolismo , Leucócitos/metabolismo , Serina Proteases/metabolismo , Shigella flexneri/enzimologia , Animais , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Movimento Celular , Quimiocina CX3CL1/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/fisiologia , Citometria de Fluxo , Cobaias , Interações Hospedeiro-Patógeno , Humanos , Receptores de Hialuronatos/metabolismo , Ceratoconjuntivite/microbiologia , Antígenos Comuns de Leucócito/metabolismo , Leucócitos/microbiologia , Leucossialina/metabolismo , Glicoproteínas de Membrana/metabolismo , Mutação , Ativação de Neutrófilo , Filogenia , Receptores de Complemento/metabolismo , Serina Proteases/classificação , Serina Proteases/genética , Shigella flexneri/fisiologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA